← Back to Black Hole Explorer

Advanced Mathematics

Mathematical formalism for Black Hole Physics and Quantum Chaos, compiled from peer-reviewed literature for educational purposes.

I. Kerr Metric & Boyer-Lindquist Coordinates

Full Kerr Metric in Boyer-Lindquist Coordinates
\[ ds^2 = -\left(1 - \frac{2Mr}{\Sigma}\right)dt^2 - \frac{4Mar\sin^2\theta}{\Sigma}dtd\phi + \frac{\Sigma}{\Delta}dr^2 + \Sigma d\theta^2 + \left(r^2 + a^2 + \frac{2Ma^2r\sin^2\theta}{\Sigma}\right)\sin^2\theta \, d\phi^2 \]
Where: \(\Sigma = r^2 + a^2\cos^2\theta\), \(\Delta = r^2 - 2Mr + a^2\), \(a = J/M\) (spin parameter)
Event Horizons (Inner & Outer)
\[ r_{\pm} = M \pm \sqrt{M^2 - a^2} \]
Horizons occur where \(\Delta = 0\): \(r^2 - 2Mr + a^2 = 0\)
Extremal limit: \(a = M\) → horizons merge at \(r = M\). Naked singularity if \(a > M\) (cosmic censorship conjecture).
Ergosphere Boundary
\[ r_{\text{ergo}}(\theta) = M + \sqrt{M^2 - a^2\cos^2\theta} \]
Static limit surface where \(g_{tt} = 0\). Observer cannot remain stationary relative to infinity.
ISCO for Kerr Black Hole
\[ r_{\text{ISCO}} = M\left[3 + Z_2 \mp \sqrt{(3-Z_1)(3+Z_1+2Z_2)}\right] \]
\(Z_1 = 1 + (1-a_*^2)^{1/3}\left[(1+a_*)^{1/3} + (1-a_*)^{1/3}\right]\)
\(Z_2 = \sqrt{3a_*^2 + Z_1^2}\), where \(a_* = a/M\)
Surface Gravity (Kerr)
\[ \kappa = \frac{r_+ - r_-}{2(r_+^2 + a^2)} = \frac{\sqrt{M^2 - a^2}}{2M(M + \sqrt{M^2 - a^2})} \]

II. Penrose Process & Energy Extraction

Penrose Process Efficiency

Energy can be extracted from the ergosphere. Particles with negative energy (relative to infinity) fall in, while particles with higher energy than the initial particle escape.

\[ E_{\text{out}} = E_{\text{in}} + |E_{\text{negative}}| \]
Maximum efficiency: \[ \eta_{\max} = \frac{E_{\text{extracted}}}{M_{\text{initial}}} = 1 - \frac{1}{\sqrt{2}} \approx 29\% \]
Irreducible Mass
\[ M_{\text{irr}}^2 = \frac{1}{2}\left(M^2 + \sqrt{M^4 - J^2}\right) = \frac{A}{16\pi} \]
Christodoulou's mass formula: \[ M^2 = M_{\text{irr}}^2 + \frac{J^2}{4M_{\text{irr}}^2} + \frac{Q^4}{4M_{\text{irr}}^2} + \frac{Q^2}{2} \]

III. Quasinormal Modes & Linear Perturbation

∿ Teukolsky Master Equation

Master equation for perturbations on a Kerr background (spin-s perturbations):

\[ \left[\frac{(r^2+a^2)^2}{\Delta} - a^2\sin^2\theta\right]\frac{\partial^2\Psi}{\partial t^2} + \frac{4Mar}{\Delta}\frac{\partial^2\Psi}{\partial t\partial\phi} + \left[\frac{a^2}{\Delta} - \frac{1}{\sin^2\theta}\right]\frac{\partial^2\Psi}{\partial\phi^2} \] \[ - \Delta^{-s}\frac{\partial}{\partial r}\left(\Delta^{s+1}\frac{\partial\Psi}{\partial r}\right) - \frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Psi}{\partial\theta}\right) - 2s\left[\frac{a(r-M)}{\Delta} + \frac{i\cos\theta}{\sin^2\theta}\right]\frac{\partial\Psi}{\partial\phi} \] \[ - 2s\left[\frac{M(r^2-a^2)}{\Delta} - r - ia\cos\theta\right]\frac{\partial\Psi}{\partial t} + (s^2\cot^2\theta - s)\Psi = 4\pi\Sigma T \]
QNM Frequencies (WKB Approximation)
\[ \omega_n = \Omega_c \ell - i\left(n + \frac{1}{2}\right)|\lambda_L| \]
For highly damped modes (large n): \[ \omega_n \approx \frac{\ln 3}{8\pi M} + i\frac{2\pi T_H}{\hbar}\left(n + \frac{1}{2}\right) \]
QNM poles in retarded Green's function → connection to quantum chaos via pole-skipping.

IV. Out-of-Time-Order Correlator (OTOC)

OTOC Definition
\[ F(t) = \langle W^\dagger(t) V^\dagger(0) W(t) V(0) \rangle_\beta \]
Regularized version (finite temperature): \[ F(t) = \text{Tr}\left[\sqrt{\rho} W^\dagger(t) \sqrt{\rho} V^\dagger \sqrt{\rho} W(t) \sqrt{\rho} V\right] \] where \(\rho = e^{-\beta H}/Z\)
Exponential Growth
\[ F(t) \approx 1 - \frac{\epsilon}{N} e^{\lambda_L t} + \mathcal{O}(\epsilon^2) \]
Commutator squared: \[ C(t) = -\langle [W(t), V]^2 \rangle_\beta \sim \frac{\epsilon}{N} e^{\lambda_L t} \]
\(\lambda_L\) = Lyapunov exponent. Scrambling time: \(t_* \sim \frac{1}{\lambda_L}\ln N\)
MSS Chaos Bound (Maldacena-Shenker-Stanford 2016)
\[ \boxed{\lambda_L \leq \frac{2\pi k_B T}{\hbar}} \]
Derivation outline:
1. Analytic continuation to imaginary time: \(F(t) \to F(t + i\beta/4)\)
2. Bound from positivity of spectral function
3. Uses KMS condition for thermal correlators
Black holes SATURATE this bound! This makes them the fastest scramblers in nature.

V. SYK Model - Exact Solvability

SYK Hamiltonian
\[ H = \sum_{1 \leq i < j < k < l \leq N} J_{ijkl} \, \psi_i \psi_j \psi_k \psi_l \]
Majorana fermions: \(\{\psi_i, \psi_j\} = \delta_{ij}\)
Disorder average: \(\overline{J_{ijkl}^2} = \frac{3! J^2}{N^3}\)
Schwinger-Dyson Equations
\[ G(\tau_1 - \tau_2) = -\langle T \psi_i(\tau_1)\psi_i(\tau_2)\rangle \] \[ \Sigma(\tau) = J^2 G(\tau)^{q-1} \] \[ G(i\omega_n)^{-1} = -i\omega_n - \Sigma(i\omega_n) \]
In the IR conformal limit \((\beta J \gg 1)\):
\[ G(\tau) \propto \frac{\text{sgn}(\tau)}{|\tau|^{2\Delta}}, \quad \Delta = \frac{1}{q} \]
Four-Point Function & Chaos
\[ \frac{\mathcal{F}(t)}{\mathcal{F}(0)} = 1 - \frac{6}{\beta J} e^{\frac{2\pi}{\beta}t} + \ldots \]
Lyapunov exponent: \(\lambda_L = \frac{2\pi}{\beta} = 2\pi T\) - saturates the chaos bound!
Schwarzian Action (Low Energy)
\[ S[\tau(u)] = -C \int_0^\beta du \, \{f(u), u\} \]
Schwarzian derivative: \[ \{f, u\} = \frac{f'''}{f'} - \frac{3}{2}\left(\frac{f''}{f'}\right)^2 \]
This action governs the dynamics of nearly-AdS₂/nearly-CFT₁ and JT gravity.

VI. Scrambling & Butterfly Effect

Butterfly Velocity
\[ v_B^2 = \frac{d}{2(d-1)} \cdot (2\pi T)^2 r_h^2 \]
Spatial spreading: \(C(t, \vec{x}) \sim e^{\lambda_L(t - |\vec{x}|/v_B)}\)
Scrambling Time
\[ t_* = \frac{\beta}{2\pi} \ln S = \frac{\hbar}{2\pi k_B T} \ln S \]
For black holes: \(S = \frac{A}{4G\hbar}\), sehingga: \[ t_* \sim r_s \ln\left(\frac{r_s^2}{l_P^2}\right) \sim M \ln M \]
Scrambling time grows only logarithmically with entropy - extremely fast!

VII. Page Curve & Unitarity

Page Curve Evolution
\[ S_{\text{rad}}(t) = \begin{cases} S_{\text{thermal}}(t) & t < t_{\text{Page}} \\ S_{\text{BH}}(t) & t> t_{\text{Page}} \end{cases} \]
Page time: \(t_{\text{Page}} \sim \frac{t_{\text{evap}}}{2}\)
At Page time, \(S_{\text{rad}} = S_{\text{BH}}\)
Page's Result for Random States
\[ \langle S_A \rangle = \ln(d_A) - \frac{d_A}{2d_B} + \mathcal{O}(1/d_B^2) \]
Where \(d_A, d_B\) are the Hilbert space dimensions of subsystems A and B, with \(d_A \leq d_B\).

VIII. Island Formula & QES

Generalized Entropy with Islands
\[ \boxed{S_{\text{gen}}(R) = \min_{\mathcal{I}} \text{ext}_{\mathcal{I}} \left[\frac{\text{Area}(\partial\mathcal{I})}{4G_N} + S_{\text{matter}}(R \cup \mathcal{I})\right]} \]
Key insight: Island \(\mathcal{I}\) is a region inside the horizon that "contributes" to the entropy of radiation \(R\).
Quantum Extremal Surface (QES)
\[ \frac{\delta}{\delta X^\mu}\left[\frac{A[\gamma]}{4G_N} + S_{\text{bulk}}[\Sigma_\gamma]\right] = 0 \]
QES generalizes RT/HRT surfaces to include quantum corrections. Crucial for resolving information paradox.
Replica Trick for Islands
\[ S = \lim_{n \to 1} \frac{1}{1-n} \log \text{Tr}(\rho_R^n) \]
Path integral with replica saddles: \[ \text{Tr}(\rho_R^n) = \sum_{\text{topologies}} e^{-I[\text{topology}]} \]

IX. Quantum Complexity & Holography

Complexity = Volume (CV)
\[ \mathcal{C}_V = \frac{V(\Sigma)}{G_N \ell} \]
\(\Sigma\) = maximal codimension-1 surface anchored at boundary time slice, \(\ell\) = AdS scale
Complexity = Action (CA)
\[ \mathcal{C}_A = \frac{I_{\text{WDW}}}{\pi\hbar} \]
Wheeler-DeWitt patch action: \[ I_{\text{WDW}} = \frac{1}{16\pi G_N}\int_{\mathcal{M}} d^{d+1}x\sqrt{-g}(R - 2\Lambda) + \text{boundary terms} \]
Lloyd's Bound
\[ \frac{d\mathcal{C}}{dt} \leq \frac{2M}{\pi\hbar} \]
For eternal AdS black hole at late times: \[ \frac{d\mathcal{C}}{dt} = \frac{2M}{\pi\hbar} \quad \text{(saturated!)} \]
Black holes are not only the fastest scramblers but also the fastest computers!
Second Law of Complexity
\[ \frac{d\mathcal{C}}{dt} \geq 0 \quad \text{until} \quad t \sim e^S \]
Complexity grows linearly for exponentially long time \(\sim e^{S_{\text{BH}}}\), then saturates and fluctuates (Poincaré recurrences).

Physical Constants & Units

Natural Units
Planck length \(\ell_P = \sqrt{\frac{\hbar G}{c^3}} \approx 1.616 \times 10^{-35}\) m
Planck mass \(m_P = \sqrt{\frac{\hbar c}{G}} \approx 2.176 \times 10^{-8}\) kg
Planck time \(t_P = \sqrt{\frac{\hbar G}{c^5}} \approx 5.391 \times 10^{-44}\) s
Planck temperature \(T_P = \sqrt{\frac{\hbar c^5}{G k_B^2}} \approx 1.417 \times 10^{32}\) K
Schwarzschild radius (1 M☉) \(r_s = \frac{2GM}{c^2} \approx 2.95\) km